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sition in N or P.  By the Sprague-Grundy theorem, any 
impartial game that is terminating and played under the 
normal play convention is equivalent to a Nim heap of a 
certain size. Therefore, any possible game of Chomp the 
Graph is equivalent to some Nim heap. Nimbers are de-
fined recursively. Let G={G0, G1, G2, … } be a Nim-
equivalent game with  options G0, G1, G2, … .That is, a 
single move can change G to G0 or G1 or G2, and so on. 
Additionally, let *H denote the nimber of a game H. A 
Nim heap of size *H can sent to any other Nim heap with 
a size that is less than *H.  Therefore, 

 *G= mex({*G0, *G1, *G2, … }) [1] 
Here mex(S) denotes the least nonnegative integer not 

contained in the set S. The mex of an empty set is 0, so a 
game with no available moves has a nimber of 0. Nimbers 
are useful because they provide an easy way to predict the 
outcome of games and sums of game (e.g. a game of Nim 
with two heaps, each with a known nimber). Nimbers can 
be added, though not in the same way as integers. Instead, 
finite nimbers are added with a nim sum as if they were 
normal integers using the bitwise exclusive-or operator.

EV Parity
In this section, we prove a relationship between the 

nimber of a game of Chomp the Graph and the number of 
vertices and edges in the graph. The nimber of the empty 
graph is 0, since there are no moves that can be made on 
it. Now, we can recursively determine the nimbers of more 
complicated graphs using Equation 1. 

Through casework, we discovered the following rela-
tionship that holds in bipartite graphs between the num-
ber of vertices and edges of a graph and its nimber. 

A graph with an even number of edges and an even 
number of vertexes has a nimber of 0.

A graph with an even number of edges and an odd 
number of vertexes has a nimber of 1.

A graph with an odd number of edges and an even 
number of vertexes has a nimber of 2.

A graph with an odd number of edges and an even 
number of vertexes has a nimber of 3.

We call this system of using the parity of the edges and 
vertices to predict the nimber of a graph EV parity. The 
EV parity of a graph can be thought of either as a two-
digit binary number (ev)2 , with e and v each representing 
single digits, or an ordered pair (e, v). The value of e is 1 if 
the graph as an odd number of edges, or 0 if it has an even 
number of edges.  The value of v is 1 if the graph as an odd 
number of vertices, or 0 if it has an even number

Introduction 
Chomp the Graph is a two player game played on a fi-

nite graph G=(V,E). On a player’s turn, they remove part 
of the graph, either removing a vertex and all edges inci-
dent to it or just a single edge; such a removal is called a 
move. The player who cannot make any more moves (i.e. is 
faced with an empty graph) loses. 

We say that a graph is an N-position the player who 
plays next will win if using optimal strategy and a P-posi-
tion otherwise. Our goal is to determine whether a given 
graph is an N-position or P-position. From these defini-
tions, we see that, from an N-position, there must be a 
move that will send the game to a P-position; otherwise, 
the first position would not be an N-position. Likewise, 
from a P-position, there is no move that will send the game 
to another P-position.

Background
Chomp the Graph is an impartial game; that is, the 

available moves depend only on the state of the game, the 
same moves are available for each player, and the payoffs 
for winning the game are the same for each player. In other 
words, the only difference between the two players is that 
one goes first while the other goes second. Additionally, 
Chomp the Graph is played under the normal play conven-
tion; the player who cannot move loses. Finally, Chomp the 
Graph is terminating because there are no infinite lines of 
play. Indeed, for each move, the total number of edges and 
vertices must always decrease by at least one, making an 
infinite line of moves impossible.

We can now relate the Chomp the Graph game to an-
other game, Nim.  In the game Nim, there are several heaps 
of “stones”. On a player’s turn, they choose a heap and re-
move one or more stones from it. 

Any game of Nim, along with any other impartial game, 
has an associated nimber, that describe whether the po-

Chomp the Graph

Figure 2. A progression of a game of Nim with one heap. 

Figure 1. An example progression of Chomp the Graph. The 
initial graph is the leftmost. The player that makes a move 
on the rightmost graph, which contains a single vertex, wins 
the game.
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has an odd number of vertices, there is at least one vertex 
of even degree. To change the parity to (0, 1), remove any 
edge. Since the edge parity of the graph is 1, there is at 
least one edge. To reset the parity to (0, 0), a vertex of odd 
degree must be removed. This is always possible. Proceed 
by contradiction; suppose the EV parity of a graph is (1,1) 
and every vertex has even degree. Define such a graph to 
be special. However, there are no graphs that are both bi-
partite and special cases, as proven below.
Lemma 3: It is impossible for a graph to be both bipartite 
and a special case.  

Proof. Let G be bipartite and have an EV parity of (1,1).  
Let its vertices be divided into sets A and B. Starting from 
just these two groups of vertices, we will attempt to add an 
odd number of edges in a way such that:

Each edge is incident on one vertex in A and one vertex 
in B.

Each vertex has even degree.
Let β(A) be the sum of the degrees of vertices in A.  Let 

β(B) be the sum of the degrees of vertices in B.  Before any 
edges are added β(A)  = 0 and β(B) = 0. Each time an edge 
is added, β(A) and β(B) each increase by one, because a 
vertex of a bipartite graph can only be adjacent to vertices 
in the other set. So when m edges have been added, β(A) 
= m and β(B) = m.  

Because the EV parity of the final graph is (1, 1), the 
final value of m is odd.   Therefore, both the sum of the 
degrees of every vertex in A and the sum of the degrees 
of every vertex in B are odd.  Because the sum of a set of 
even numbers cannot be odd, at least one vertex in each set 
must have odd degree.
Theorem 1: A bipartite graph with EV parity (e, v) has a 
nimber of (ev)2.

Proof. First, let us impose an order on EV parities such 
that if the EV parity of graph G is greater than the EV 
parity of graph H, then the proposed nimber of G is also 
greater than the proposed equivalent nimber for H. Thus, 
the EV parities, from least to greatest, are: (0, 0), (0, 1), 
(1, 0), and (1, 1).

The nimber of a game is defined as the smallest nimber 
not present in the set of the game’s options. Our theorem 
is true if and only if, for all bipartite graphs, the graph’s 
EV parity is the smallest EV parity not contained in the 
set of its options. We prove this restatement of the theo-
rem by considering it for each of the four EV parities.

A non-empty graph of EV parity (0, 0) cannot have 
another graph of EV parity (0, 0) in its set of options, by 
Proposition 1, which states that there is no move that will 
leave a graph’s EV parity unchanged. Thus the smallest 
EV parity not contained in the set of options is (0, 0), and 
the theorem holds for this case.

The empty graph, which also has EV parity (0, 0), has 
no options. The smallest EV parity that is not in the empty 
set is the smallest EV parity, (0, 0). The theorem holds for 
this case.

of vertices. The binary representation of EV parity is the 
nimber of the graph. 

 
Proof for Bipartite Graphs

In this section, we prove that a bipartite graph with EV 
parity (e, v) is equivalent to a nimber ev2. We do this by es-
tablishing that, for a graph G with nimber *G, there exist 
moves to change the graph’s nimber to *G - 1, *G - 2, … 
1, 0, but that there is no move that will leave the graph’s 
nimber at *G.
Propostion 1: For any graph, there is no move that will 
not change the graph’s EV parity.

Proof. The player has two options:
Remove a vertex, and all edges connected to it. This 
changes the vertex parity, and may or may not change the 
edge parity.

Remove an edge. This changes the edge parity.
Lemma 1: If a graph has an odd number of vertices --- that 
is, a vertex parity v of 1 --- then the graph contains at least 
one vertex of even degree.

Proof. Proceed by contradiction; suppose a graph with 
an odd number of vertices has only vertices of odd degree. 
However, because there are an odd number of vertices, all 
of which have odd degree, then the sum of the degrees 
would be odd.  This is impossible since the sum of degrees 
is the number of edges times two, and therefore must be 
even. Thus, at least one vertex has even degree. 
Proposition 2: If presented with a graph of (0, 1) EV par-
ity, there exists a single move that will change the graph’s 
parity to (0, 0).

Proof. To reset this position to (0, 0), we must remove a 
vertex of even degree. By Lemma 1, this graph --- which 
has a vertex parity of 1 --- has such a vertex.
Proposition 3: If presented with a graph of (1, 0) EV par-
ity, there exists a single move that will change the graph’s 
parity to (0, 1) and a single move that will change the 
graph’s parity to (0, 0).

Proof. If the graph’s EV parity is (1, 0), there is at least 
one edge. Remove this edge to change the graph’s parity 
to (0, 0). To change the parity to (0, 1), a vertex of odd de-
gree must be removed. This is always possible. Proceed by 
contradiction; suppose that in a graph of (1, 0) EV parity, 
all vertices are of even degree. Then the sum of degrees of 
all vertices in the graph is divisible by four since there are 
an even number of vertices in the graph each with an even 
degree. Because twice the number of edges is the sum of 
the degrees, the number of edges in this graph must also 
by even. This is a contradiction, so there is at least one 
vertex of odd degree in a graph with (1, 0) parity, and the 
parity can be changed to (0, 1).
Proposition 4: If presented with a bipartite graph of (1, 1) 
EV parity, there exist moves to change the graph to (1, 0), 
(0, 1), or (0, 0) parity.

Proof. To change the parity to (1, 0), a vertex of odd 
degree must be removed. By Lemma 1, since this graph 
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an EV parity of (1, 0). To win, the first player removes any 
edge from the cycle. We also investigated single odd cycle 
graphs where a central odd cycle has trees branching off 
from some or all of its vertexes. For example:

We classified these graphs based on their EV parity and 
the nature of the odd cycle’s vertexes. 

O: Each of the cycle’s vertexes is incident to an odd 
number of edges

E: Each of the cycle’s vertexes is incident to an even 
number of edges

ME: One of the cycle’s vertexes is incident to an odd 
number of edges. The rest are incident to an even number 
of edges.

MO: One of the cycle’s vertexes is incident to an even 
number of edges. The rest are incident to an odd number 
of edges.

MM: The graph does not fall into any of the previously 
listed cases. 

Through casework, we investigated these categories of 
graphs and created the following table. Blank spots could 
be either winning positions or losing positions, or are un-
known. N represents a N position, and P represents a P 
position.

O E MO ME MM

(1,1) N N N N
(1,0) N N N N N
(0,1) N N N N
(0,0) L

Non-Planar Graphs
It is important to note that the argument for EV parity 

only requires the graph to be bipartite; the graph can be 
non-planar. Though planarity could potentially play a role 
in complex odd cycle graphs, it has no effect on graphs 
that can be predicted by EV parity.

Identical Subgraph Theorum
Consider a graph G that can be categorized into three 

distinct subgraphs H1, H2, and H3 where H1 and H3 are 
isomorphic and do not share an edge on G, and H3 is 
equivalently connected to H1 and H2, which means that 
for every edge between a vertex v3 on H3 and vertex v1 on

A graph of EV parity (0, 1) has a graph with EV parity 
(0, 0) in its set of options, by Proposition 2. It does not a 
graph of parity (0, 1) in its options by Proposition 1. Thus, 
the smallest EV parity not contained by its set of options 
is (0, 1).

A graph with EV parity (1, 0) has graphs of EV par-
ity (0, 1) and (0, 0) in its set of options by Proposition 3. 
It does not have a graph of EV parity (1, 0) in its set of 
options by Proposition 1, thus the smallest EV parity not 
contained by its set of options is (1, 0).

A bipartite graph with EV parity (1, 1) has graphs of 
EV parity (1, 0), (0, 1), and (0, 0) in its set of options by 
Proposition 4. It does not have a graph of EV parity (1, 1) 
in its set of options by Proposition 1, thus the smallest EV 
parity not contained by its set of options is (1, 1).
Thus the theorem holds for all bipartite graphs.
This theorem allows us to predict whether a given bipartite 
graph is an N-position or a P-position, since:

If the bipartite graph has non-(0, 0) EV parity, it has a 
nonzero nimber. A Nim heap with a nonzero number of 
stones is a N-position, so bipartite graphs with non-(0, 0) 
EV parity are N-positions.

If the bipartite graph has (0, 0) EV parity, the graph 
has a nimber of 0. A Nim heap with 0 stones is a P-posi-
tion, so graphs with (0, 0) EV parity are P-positions.
 
Odd Cycles and EV Parity

Most graphs can be solved using this idea of EV parity. 
However, an example of a graph that cannot be solved us-
ing EV parity is a triangle.

In this case, the EV parity is (1, 1). However, this 
graph cannot be sent to a (0, 0) position because there is 
no vertex of odd degree. (Note: this does not contradict 
our previous application of EV parity because it is not a 
bipartite graph.) Even cycles are bipartite graphs, so their 
positions are easy to calculate. In general, all odd cycles 
display this property: they have EV parities of (1,1) and 
have no vertices of odd degree.  Still, some graphs con-
taining odd cycles still have predictable positions. 

Predictable Odd Cycle Graphs
Some graphs containing odd cycles can be won through 

a technique called “cycle killing.” We focused on cycle 
killing for graphs that contain a single odd-cycle. In this 
technique, the player attempts to make a move that both 
follows EV parity and removes the odd cycle. By doing 
this, the player changes the graph into a (0, 0) bipartite 
graph, a losing position for their opponent. The cycle kill-
ing strategy works for any single odd cycle graph that has 
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and that it is Player 1’s turn. No matter what Player 1 does, 
Player 1 cannot avoid playing a game that is equivalent to 
H3. Any moves involving H1 or H2 are stalling moves that 
do not affect H3. 

Player 1 has three stalling moves:
If Player 1 removes an edge connecting H1 and H3, 

Player 2 can remove the equivalent edge connecting H2 
and H3. This end position is also reducible, and H3 is
maintained.

If Player 1 removes a vertex in H1, Player 2 can remove 
the equivalent vertex in H2. This end position is also reduc-
ible, and H3 is maintained.

If Player 1 removes an edge within H1, Player 2 can 
remove the equivalent edge within H2. This end position is 
also reducible, and H3 is maintained.

In each of these cases, H3 is maintained and the graph 
remains reducible. Since H1 and H2 are finite, there are a 
finite number of stalling moves Player 1 can make, so H1 
and H2 will eventually be removed from the overall graph 
without affecting H3. If Player 1 ever plays on H3, then 
Player 2 plays on H3 as if H1 and H2 are not part of the 
game. To show why this does not affect H1 or H2, examine 
the moves on H3 that Player 1 can make.

If Player 1 removes an edge in H3, this will not affect 
H1 or H2.

If Player 1 removes a vertex v* in H3, this will not 
uniquely affect H1 or H2. Since this graph is reducible, v* 
must be connected to the same vertices in H1 and H2, so 
H1 and H2 are identically affected (e.g. both vc on H1 and 
H2 lose a degree).

Since moves involving H1 and H2 are only stalling 
moves, and moves involving H3 identically affect H1 and 
H2, the overall graph has the same position as H3. The IST 
is especially useful when the position of a graph is not easi-
ly predictable using EV parity or a cycling-killing strategy. 

In this example, the IST is used to simplify a graph con-
taining two odd cycles. Since the graph on the right is a 
bipartite graph with an EV parity of (0, 0), we know that 
the original graph had a P-position.

H1, there is an edge between v3 on H3 and vertex v2 on 
H2, in which v2 is the isomorphic counterpart to v1. If a 
graph satisfies these criteria, it is said to be reducible.   

In the example above, H1 and H2 are isomorphic: they 
are both have a center vertex vc that is connected to two 
other vertices. Also, H1 and H2 and do not share an edge. 
H3 is equivalently connected to both H1 and H2. In both 
cases, the edge is connected to v* and vc. So, this graph is 
reducible.

In the example above, H3 is not equivalently connected 
to H1 and H2. Between H1 and H3, there is an edge be-
tween v* and vc, whereas between H2 and H3, there is an 
edge between v* and v2, H3.

The Identical Subgraph Theorem (IST) states that re-
ducible graphs has the same position (N or P) as the sub-
graph H3.

Proof: Suppose a graph G, with subgraphs H1, H2, and 
H3 is reducible.

Without loss of generality, suppose H3 is N-position 

Figure 3. A graph that is reducible. H1 and H2 are isomor-
phic and do not share and edge. H3 is equivalently connected 
to both H1 and H2. 

Figure 4. A graph that is not reducible given its current cat-
egorizations.

Figure 5. An example use of the Identical Subgraph  Theo-
rem to predict a graph.
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Conclusion
Chomp the Graph is a terminating impartial game 

that adheres to normal play convention. By the Sprague-
Grundy theorem, Chomp must have a nimber, which 
determines if a position can be won if played optimally. 
In bipartite graphs, casework proves that this nimber is 
equal to (ev)2 , where e is the number of edges and v is the 
number of vertices in the graph. This approach is limited 
by the odd cycles. A graph with only one odd cycle can be 
predicted by eliminating the cycle and keeping the edge 
and vertex parity in mind. When a graph goes beyond the 
scope of cycle-killing, the Identical Subgraph Theorem 
(IST) provides a method for simplifying the graphs that 
adhere to a more general standard.


