
Learning Long-term Dependencies with Deep Memory States

Vitchyr Pong VITCHYR@BERKELEY.EDU

University of California, Berkeley

Shixiang Gu SG717@CAM.AC.UK

University of Cambridge, Max Planck Institute for Intelligent Systems

Sergey Levine SVLEVINE@EECS.BERKELEY.EDU

University of California, Berkeley

Abstract
Training an agent to use past memories to adapt
to new tasks and environments is important for
lifelong learning algorithms. Training such an
agent to use its memory efficiently is difficult
as the size of its memory grows with each
successive interaction. Previous work has not
yet addressed this problem, as they either use
backpropagation through time (BPTT), which is
computationally expensive, or truncated BPTT,
which cannot learn long-term dependencies, to
train recurrent policies. In this paper, we propose
a reinforcement learning method that addresses
the limitations of truncated BPTT by using a
learned critic to estimate truncated gradients and
by saving and loading hidden states outputted by
recurrent neural networks. We present results
showing that our algorithm can learn long-term
dependencies while avoiding the computational
constraints of BPTT. These results suggest that
our method can potentially be used to train an
agent that stores and effectively learns from past
memories.

1. Introduction
While feed-forward, reactive policies can perform complex
skills in isolation (Williams, 1992; Lange & Riedmiller,
2010; Mnih et al., 2015; Schulman et al., 2016), the abil-
ity to store past events in an internal memory is crucial
for a wide range of behaviors. For example, a robot nav-
igating a building might need to incorporate past observa-
tions to optimally estimate its location (Gupta et al.; Mnih

Accepted at Lifelong Learning: A Reinforcement Learning Ap-
proach Workshop @ICML, Sydney, Australia, 2017. Copyright
2017 by the author(s).

et al., 2016), or remember a command previously issued
by a person. Perhaps more importantly, long-term mem-
ory can be utilized for lifelong learning, where an agent
uses past experiences to quickly modify its behavior in re-
sponse to changing environments. Such recurrent meta-
learning has been demonstrated on a variety of supervised
learning tasks (Chen et al., 2017; Vinyals et al., 2016), and
more recently applied to a variety of reinforcement learning
tasks (Heess et al., 2015; Wang et al.; Duan et al., 2016a).
However, realistic applications of policies with memory
may demand particularly long-term memorization. For ex-
ample, a robot tasked with setting the silverware on the ta-
ble would need to remember where it last stored it, poten-
tially hours or days ago.

This kind of long-term memorization is very difficult with
current reinforcement learning methods. Specialized archi-
tectures have been developed that improve the capabilities
of recurrent networks to store information (Hochreiter &
Urgen Schmidhuber, 1997; Chen et al., 2017; Vinyals et al.,
2016), but such methods still require back-propagation
through time (BPTT) for training, which typically limits
how far back the error is propagated to at most the length
of the trajectory. Past this size, the gradient is truncated (El-
man, 1990; Williams & Peng, 1990; Hausknecht & Stone,
2015). Truncating the gradient between when the policy
must perform a crucial task (such as finding the silverware)
and the observation that needs to be memorized to know
which action to perform (the last location of the silverware)
can make it impossible to successfully perform the task.

While some tasks may be solved by loading entire episodes
into memory and avoiding truncation (Wierstra et al., 2007;
Heess et al., 2015), a lifelong learning agent has no no-
tion of episodes. Instead, a lifelong learning agent lives out
a single episode that continuously grows. Computational
constraints, both in terms of memory and practical training
times, impose a fundamental limit on the memory capacity
of neural network policies.

Learning Long-term Dependencies with Deep Memory States

Rather than loading full episodes or truncating gradients,
one can instead augment the original MDP with memory
states (Peshkin et al., 2001; Zhang et al.). In addition to
regular MDP actions, a policy outputs a vector called mem-
ory states, which it receives as input at the next time step.
These memory states are equivalent to hidden states in nor-
mal recurrent neural network, but by interpreting mem-
ory states as just another part of the MDP state, recurrent
policies can be trained using standard reinforcement learn-
ing methods, including efficient off-policy algorithms that
can handle potentially infinite episode lengths (Mnih et al.,
2015; Lillicrap et al., 2015; Gu et al., 2016). However,
the use of memory states forces the learning algorithm to
rely on the much less efficient gradient-free RL optimiza-
tion to learn memorization strategies, rather than the low-
variance gradients obtained from back-propagation through
time (BPTT). For this reason, even truncated BPTT is usu-
ally preferred over the memory states approach when using
model-free RL algorithms.

We propose a hybrid recurrent reinforcement learning al-
gorithm that combines both memory states and BPTT. To
obtain a practical algorithm that enables memorization over
potentially unbounded episodes, we must use some form of
memory states to manage computational constraints. How-
ever, we must also use BPTT as much as possible to make
it feasible for the learner to acquire appropriate memoriza-
tion strategies. Our actor-critic algorithm includes mem-
ory states and write actions, but performs analytic BPTT
within each batch, loading subsequences for each training
iteration. This approach allows us to use batches of rea-
sonable size with enough subsequences to decorrelate each
batch, while still benefiting from the efficiency of BPTT.
Unfortunately, the use of memory states by itself is insuffi-
cient to provide for a Markovian state description, since an
untrained policy may not store the right information in the
memory. This makes it difficult to use memory states with
a critic, which assumes Markovian state. To address this
issue, we also propose a method for backpropagating Bell-
man error gradients, which encourages the policy to take
write actions that reduce future Bellman error.

We describe the approach, and present preliminary results
on simple recurrent memorization tasks that show that our
method performs comparable to full BPTT. Our tasks re-
quire the learner to memorize information over long peri-
ods and learn an effective critic and actor model, suggesting
that the hybrid approach may extend successfully to more
challenging reinforcement learning scenarios.

2. Preliminaries
We consider a partially observed Markov Decision Prob-
lem (POMDP), which is made of a state space S, an
observation space O, an action space A, an initial state

distribution s1 ∼ p0(·), a conditional observation prob-
ability pO|S(o|s), and a transition dynamics distribution
p(st+1|st,at). Let o1:t = (o1,o2, . . . ,ot) be a sequence
of observations. A policy πθ(a|o1:t) maps from a se-
quence of observation o1:t to a distribution over actions
a and is parameterized by θ. We denote a trajectory by
τ = (s1,o1,a1, s2,o2,a2, ...). At each time step, the pol-
icy gets a reward of r(st,at). The total discounted reward
is
∑∞
k=t γ

kr(sk,ak) where γ ∈ (0, 1) is a discount factor.
The objective is to find the parameter θ that maximizes the
policy’s expected discounted return, given by

J(θ) = Eτπ

[∞∑
k=t

γkr(sk,ak)

]

where τπ is the trajectory induced by following the (possi-
bly deterministic) policy πθ. Lastly, we define the Q func-
tion, defined as

Qπ(s,a) = Eτπ

[∞∑
k=1

γkr(sk,ak) | s0 = s,a0 = a

]

which represents the expected value of taking action a at
state s and following policy π thereafter. This Q function
is not easy to compute and so in practice we approximate
it with a function Qω parameterized by ω, using a neural
network.

2.1. Recurrent Neural Networks

A popular approach to handle partial observability is to
use recurrent neural networks (RNNs) to represent policies
(Wierstra et al., 2007; Hausknecht et al., 2016; Oh et al.,
2016). A RNN policy has two functions: an action func-
tion φ(ot,ht) and a hidden state function ψ(ot,ht). At
each time step t, a RNN policy takes as input observation
ot and hidden vector ht and the action function outputs the
next action of the policy, while the hidden state function
outputs the next hidden state, ht+1 = ψ(ot,ht). The hid-
den vector is then received as input to the network at the
next time step. Since ht depends on o1:t, the next action
is a function that depends on all of the previous actions.
These policies may be trained with BPTT to solve tasks
that require memory by loading sequence of observations
and actions (Wierstra et al., 2007).

2.2. Memory States

An alternative formulation to train policies with memory
capabilities is to interpret the hidden vectors outputted by
the RNN as memory states and considering these memory
states as another component of a new MDP (Peshkin et al.,
2001; Zhang et al.). Specifically, at each time step t, the
memory state mt is appended to the observations seen in
the original POMDP. The POMDP action space is also aug-

Learning Long-term Dependencies with Deep Memory States

mented by adding a memory write action, wt. This modi-
fication gives us new states and actions:

ŝt =

[
ot
mt

]
, ât =

[
at
wt

]
, ŝt+1 =

[
ot+1

mt+1 = wt

]
(1)

At each time step, the previous memory write action is
copied directly to the next memory state, so that mt+1 =
wt. This augmented state space, action space, and tran-
sition gives us a new MDP. Intuitively, one hopes that the
memory augmented state ŝ captures all the information in
the true state, s. In this augmented MDP, Q is now a func-
tion of ŝ and â, and so we write Q(ŝ, â). Similarly the
policy will be written as π(ŝ).

While RNN policies and policies with memory states are
computationally equivalent, they are conceptually quite
different. A RNN policy is a function of a history of ob-
servations and must be trained with histories. With mem-
ory states, the policy is a function of the current observa-
tion and the current memory. When training RNN policies,
truncated BPTT cannot learn long-term dependencies, but
truncated BPTT allows us to exploit the known dynamics
of the hidden states. In contrast, the memory states formu-
lation instead assumes that the memory augmented MDP is
completely Markovian and can therefore capture long-term
dependencies. Unfortunately, this assumption is unlikely
to be true at the start of training, since the memory state
outputted by the policy depends on the initialization. We
would like to combine the best of both methods: leverage
BPTT and use a framework that can learn long-term depen-
dencies.

3. Method
BPTT is an efficient algorithm for optimizing RNNs, but
it requires knowing the gradient of the loss function with
respect to each output of a RNN. In reinforcement learn-
ing, we only have access to samples to the loss function.
Methods that train recurrent policies with BPTT (Wierstra
& Alexander; Wierstra et al., 2007; Duan et al., 2016a;
Heess et al., 2015) estimate this gradient by using the RE-
INFORCE trick, or by training a critic and using its deriva-
tive with respect to the action, as shown in Figure 1a.

When episodes become too long to load
full episodes for BPTT, truncated BPTT
loads a sub-trajectory from time t to t + k:
(ot,mt,at,wt, rt, . . . ,ot+k,mt+k,at+k,wt+k, rt+k)
and initializes the RNN hidden state to all zeros, as
shown in Figure 1b. However the future returns can
substantially change depending on past observations,
including observations that are not loaded into the current
subtrajectory. Truncation makes it impossible to learn
dependencies on past observations that were never loaded.

Figure 1. Different techniques for training RNN policies. At each
time step, the policy receives an observation oi and outputs both
an action ai and the next memory state mi+1. An approximation
of dQ

da
is used at each time step to supervise the policy action

outputs. (a) BPTT requires loading full episodes. (b) Truncated
BPTT approximate BPTT, but does not capture past information
(the all zeros vector is loaded in) nor does it receive supervision
for its final memory write action. (c) Our method captures past
dependencies by loading memory states and approximates dQω

dw

to supervise the final memory write action.

This approach also suffers from another issue: because
the last write action of the loaded sub-trajectory has no
supervision signal (i.e. dL

dwt+k
= 0), the recurrent weight is

not rewarded for minimizing future losses.

We show how to overcome both of these issues via a mem-
ory state formulation. First we reiterate that a RNN policy
is computationally equivalent to a feed-forward policy that
outputs actions and memory states that are given as input
to the policy at the next time step. Rather than initializ-
ing the RNN hidden state to all zeros, we load the memory
state that the policy outputted during the forward pass. If
we assume that the loaded memory state summarizes the
past (see Section 3.1 for how we enforce this), then this
mechanism will allow the RNN to learn dependencies on
that past information without needing to load all previous
observations.

Furthermore, since the last write action wt+k outputted by
the network is simply part of the augmented MDP action
space, our critic Qω is already a function of that memory
state. Therefore, we use dQω

dw to estimate the final gradi-
ent dL

dwt+k
. This is mathematically equivalent to training

the policy to maximize the estimated Q value in our aug-
mented state space. We do so by minimize the following
loss function

Lπ(πθ) = −Qω(ŝt, πθ(ŝt)) (2)
with gradient descent.

Learning Long-term Dependencies with Deep Memory States

We train the critic by minimizing the following squared
Bellman error loss function

LQ(Qω) =
1

T

∑
t

‖Qω(ŝt, ât)− yt‖22 (3)

where

yt = r(ŝt, ât) + γmax
â′∈A

Qω(ŝt, â
′) (4)

= r(ŝt, ât) + γQω(ŝt, argmax
â′∈A

Qω(ŝt, â
′)) (5)

≈ r(ŝt, ât) + γQω(ŝt, πθ(ŝt)) (6)

Equations (3, 4, 5) define the typical Bellman-error that is
minimized in Q-learning methods in our augmented MDP.
Because we deal with continuous action spaces, the max-
imization in (5) is computationally expensive. So, we ap-
proximate the maximum with the current policy in Equa-
tion 6, as in neural fitted Q-iteration for continuous ac-
tion (Hafner & Riedmiller, 2011).

3.1. Learning good memory states

We explain how we enforce the memory augmented states
to be Markovian, which is important because Q-learning
methods assume that the state is Markovian. Given a ran-
dom initialization of a network, it is unlikely that the mem-
ory states will be Markovian and so the critic will have dif-
ficulty minimizing the Bellman error in Equation (3). Our
insight is that we can encourage the policy to write Marko-
vian memory state that make it easy for the critic to min-
imize Equation (3). We do so by making the policy also
minimize the Bellman error of the critic. The policy mini-
mizes the following loss function

Lπ(πθ) = −Qω(ŝt, πθ(ŝt)) + λ ‖Qω(ŝt, ât)− yt‖22 (7)

where yt (defined in Equation (6)) depends on the policy.
Since minimizing the Bellman error requires the memory
augmented state space to be Markovian, the policy must
learn to make the memory states Markovian, which is pre-
cisely what we want. The hyperparameter λ trades off how
much the policy tries to maximize its immediate reward and
how much it tries to make the memory states more useful
for the critic.

3.2. Generating On-Policy Memory States

Our algorithm is derived to work in off-policy settings, but
we suspect that it performs better if we use more on-policy
data. Collecting more on-policy data normally requires
sampling more data from the environment. However, since
we know the dynamics of the memory write actions and
memory states, we can simulate more data. When we train
our policy on a subtrajectory minibatch, we unroll the pol-
icy for the length of that subtrajectory and get its outputted

Algorithm 1 Our Method
Initialize critic network Qω(at,ht) and actor πθ(ht)
with params ω and θ.
Initialize target networks Qω

′
and πθ

′
with weights

ω′ ← ω, θ′ ← θ.
Initialize replay buffer R.
for episode = 1,M do

Initialize a random process N for action exploration
Receive initial observation state s1
Initialize memory state to all zeros m1 = 0
for t = 1, T do

Select augmented action at,wt = πθ(ŝt) +Nt
at, rt,ot+1 = step(at)
Construct ât, ŝt, and ŝt+1 using Equation 1
Store (ât, ŝt, ŝt+1, rt) in R
Sample (ŝit:t+K+1, â

i
t:t+K , r

i
t:t+K)Ni=1 from R.

Compute target values for each sample

yit = rit + γQω
′
(ŝt, ât).

Perform gradient update for critic loss (3) and pol-
icy loss (7), averaging across i samples.
Save computed write action wi

t back into R.
Update target networks with ω′ ← αω+ (1−α)ω′

and θ′ ← αθ + (1− α)θ′
end for

end for

environment action and new memory write action at each
time step. Subtrajectories are sampled from all valid sub-
trajectory of a full subtrajectory, and not, e.g., just from the
beginning or end of the trajectory. We save these newly
computed memory states back into the replay buffer. The
final algorithm is summarized in 1.

4. Experiments
On a toy task, we demonstrate that our method can train
policies with short subsequences to solve tasks that require
long-term memory. In this problem, the observation space
is O = {−1, 0, 1} and the action space is [0, 1]. At the
first time step, the policy either receives +1 or −1. For
the remaining time steps t = 2, . . . ,H = 25, the policy
receives an observation of zero. At the last time step, the
policy outputs a number between −1 and 1. The reward
for the last time step is the policy’s output times the initial
observation. All other rewards are zero. To maximize its
returns, the policy must learn to memorize the initial input
and output a value of the same sign in the last time step.
While supervised learning is able to solve this task easily,
we explore how reinforcement learning algorithms perform
on this problem.

In addition to this toy task, we tested our algorithm in a

Learning Long-term Dependencies with Deep Memory States

Markov decision problem called “2D Target,” where super-
vised learning could not be used. In this problem, the goal
is to navigate a 2-dimensional point to a target circle. The
action is a two-dimensional force applied to a point, and
the observations are the x- and y-coordinate of the point,
as well as whether or not the point is on the target. The
field is a 10x10 arena (with walls stopping the point mass
from existing the arena), the target is a circle with radius 2
whose location is randomly initialized every episode, and
the forces and velocities are clipped to 1, where all dis-
tances are normalized. The agent receives a reward of 1
when it is on the target circle and otherwise receives a re-
ward of zero. Only at the first time step, the agent receives
the x- and y-coordinate of the center of the target. With-
out memory, the optimal strategy is to wander the entire
arena until the agent stumbles upon the target. If the agent
can learn to use its memory well, then it can learn to go
directly to the target by remembering its first observation.

First, we tested our algorithm on both problems while vary-
ing the subtrajectory length. For comparison, we tested two
reinforcement learning algorithms on this task: deep de-
terministic policy gradient (DDPG) Lillicrap et al. (2015),
an off-policy actor-critic algorithm, and trust region pol-
icy optimization (TRPO) Schulman et al. (2015), a policy
gradient method. We also trained these algorithms when
we augmented the environment with memory write action
and memory states and (for the 2D target task) when us-
ing their recurrent version, recurrent deterministic policy
gradient Heess et al. (2015) and a recurrent TRPO imple-
mentation from (Duan et al., 2016b).

An important advantage of our algorithm over BPTT is that
our algorithm does not need to load full trajectories into
batches. This ability is especially important when the max-
imum size of a batch is fixed due to computational limits.
To simulate this scenario, in all experiments, we trained our
algorithm with a fixed batch size of 100 time steps while
varying the length of the loaded subtrajectories. For exam-
ple, if each loaded subtrajectory has length 5, then we can
load 20 subtrajectories, whereas if we load full trajectories
(length 25), we can only load 4 subtrajectories.

Our method differs from truncated BPTT in two regards:
(1) we load the saved memory state rather than initializing
the memory sate to zero and (2) the policy uses the gradient
dQω
dw to supervise its memory write actions. We conducted

an ablative analysis to understand the contribution of each
modification.

4.1. Results

While both DDPG and TRPO have been shown to solve
challenging, fully observed tasks, we see in Figures 2 and
3 that these methods cannot solve the partially observed
toy task or 2D Target task. Furthermore, DDPG and TRPO

Figure 2. Average return on toy task vs. number of sampled time
steps. Error bars show standard deviation across 5 different ran-
dom seeds. Performance of our algorithm with full BPTT (Our
Method), deep deterministic policy gradient (DDPG), DDPG with
memory states (Memory States + DDPG), trust region policy opti-
mization (TRPO), and trust region policy optimization with mem-
ory states (Memory States + TRPO). Other algorithms fail to solve
this partially observed task, even when memory states are added
to the problem.

Figure 3. Average return on 2D Target vs number of sampled time
steps for variants of our algorithm (top row), deterministic policy
gradient (middle row), and trust region policy optimization (bot-
tom row). Error bars show standard deviation across 5 different
random seeds. Note that TRPO uses 20 time more samples to
reach a similar performance.

Learning Long-term Dependencies with Deep Memory States

(a) 2D Target Task

(b) Toy Task

Figure 4. Average return vs. subtrajectory length for different
variations of our algorithm after (a) 100,000 samples for the 2D
Target task and (b) 3000 samples for the toy task. Error bars show
standard deviation across 5 different random seeds. Our method
performs the best across varying subtrajectory lengths. Both load-
ing saved memory states and making the critic a function of the
memory state is important.

were not able to solve the task even with the augmented
memory state space, suggesting that simply augmenting the
state space is insufficient to make these algorithms solve
partially observed tasks. In contrast, our method is able to
consistently solve the tasks when using full subtrajectories.

When the subtrajectory length is less than the full sequence,
we see that our method is still able to solve the task as
shown in Figure 4. While we expected the performance
to monotonically decrease as we used shorter and shorter
subsequence lengths, we were surprised to see that our al-
gorithm performed very well when the subtrajectory length
was one for the toy task. We hypothesize that this result is
because using many, small subtrajectories allows the sam-
ples to be maximally decorrelated, but we note that this
trend was not observed in the more difficult 2D target task.

Figure 4 also shows that our differences from truncated
BPTT are important. Without either modification, the per-
formance of our method quickly deteriorates as the subtra-
jectory length decrease for the toy task. Though less dras-
tic, this trend is also observed in the 2D Target task. We
also note that while no variations do well when no BPTT
is used (the subtrajectory length is 1), our method still per-
forms well even when the length of the subtrajectory is less
than half of the entire episode length.

5. Conclusion
In this paper, we reformulate a partially observed MDP as
a fully observed MDP with an augmented state and action
space. However, we show that it is difficult to rely solely
on high-variance reinforcement learning algorithms to op-
timize a policy in this new MDP. We show how to combine
Q-learning for continuous actions with BPTT to effectively
train recurrent policies. Our results show that it is possi-
ble to train recurrent policies to learn long-term dependen-
cies without ever needing to load full trajectories, even if
the dependencies span the entire duration of the trajectory.
We show that our method is applicable in both supervised
learning and reinforcement learning tasks as a means of
learning long-term dependencies without needing to load
full trajectories.

References
Chen, Steven W, Atanasov, Nikolay, Khan, Arbaaz, Kary-

dis, Konstantinos, Lee, Daniel D., and Kumar, Vijay.
Neural Network Memory Architectures for Autonomous
Robot Navigation. 2017.

Duan, Yan, Chen, Xi, Schulman, John, and Abbeel, Pieter.
Benchmarking Deep Reinforcement Learning for Con-
tinuous Control. arXiv, 48:14, 2016a.

Duan, Yan, Schulman, John, Chen, Xi, Bartlett, Peter,

Learning Long-term Dependencies with Deep Memory States

Sutskever, Ilya, and Abbeel, Pieter. RLˆ2: Fast Re-
inforcement Learning Via Slow Reinforcement Learn-
ing. arXiv, pp. 1–14, 2016b. ISSN 0004-6361. doi:
10.1051/0004-6361/201527329.

Elman, Jeffrey L. Finding structure in time. Cognitive Sci-
ence, 14(1 990):179–211, 1990. ISSN 03640213.

Gu, Shixiang, Lillicrap, Timothy, Sutskever, Ilya, Levine,
Sergey, and Com, Slevine@google. Continuous Deep
Q-Learning with Model-based Acceleration. Icml, 2016.

Gupta, Saurabh, Davidson, James, Levine, Sergey, Suk-
thankar, Rahul, and Malik, Jitendra. Cognitive Mapping
and Planning for Visual Navigation.

Hafner, Roland and Riedmiller, Martin. Reinforcement
learning in feedback control : Challenges and bench-
marks from technical process control. Machine Learn-
ing, 84(1-2):137–169, 2011. ISSN 08856125.

Hausknecht, Matthew and Stone, Peter. Deep Recurrent
Q-Learning for Partially Observable MDPs. 2015.

Hausknecht, Matthew, Stone, Peter, and Mc, Off-policy.
On-Policy vs. Off-Policy Updates for Deep Reinforce-
ment Learning. Ijcai, 2016.

Heess, Nicolas, Hunt, Jonathan J, Lillicrap, Timothy P,
and Silver, David. Memory-based control with recurrent
neural networks. arXiv, pp. 1–11, 2015.

Hochreiter, Sepp and Urgen Schmidhuber, J. LONG
SHORT-TERM MEMORY. Neural Computation, 9(8):
1735–1780, 1997.

Lange, Sascha and Riedmiller, Martin. Deep auto-encoder
neural networks in reinforcement learning. In The
2010 International Joint Conference on Neural Net-
works (IJCNN), pp. 1–8. IEEE, jul 2010. ISBN 978-
1-4244-6916-1.

Lillicrap, Timothy P., Hunt, Jonathan J., Pritzel, Alexander,
Heess, Nicolas, Erez, Tom, Tassa, Yuval, Silver, David,
and Wierstra, Daan. Continuous control with deep re-
inforcement learning. arXiv preprint arXiv:1509.02971,
pp. 1–14, 2015. ISSN 1935-8237.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David,
Rusu, Andrei a, Veness, Joel, Bellemare, Marc G,
Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K,
Ostrovski, Georg, Petersen, Stig, Beattie, Charles, Sadik,
Amir, Antonoglou, Ioannis, King, Helen, Kumaran,
Dharshan, Wierstra, Daan, Legg, Shane, and Hassabis,
Demis. Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529–533, 2015. ISSN
0028-0836.

Mnih, Volodymyr, Badia, Adrià Puigdomènech, Mirza,
Mehdi, Graves, Alex, Lillicrap, Timothy P, Harley, Tim,
Silver, David, and Kavukcuoglu, Koray. Asynchronous
Methods for Deep Reinforcement Learning. arXiv, 48:
1–28, 2016.

Oh, Junhyuk, Chockalingam, Valliappa, Singh, Satinder,
and Lee, Honglak. Control of Memory, Active Percep-
tion, and Action in Minecraft. arXiv, 2016.

Peshkin, Leonid, Meuleau, Nicolas, and Kaelbling, Leslie.
Learning Policies with External Memory. Sixteenth In-
ternational Conference on Machine Learning, (March):
8, 2001. ISSN 1098-6596.

Schulman, John, Levine, Sergey, Jordan, Michael, and
Abbeel, Pieter. Trust Region Policy Optimization. Icml-
2015, pp. 16, 2015. ISSN 2158-3226.

Schulman, John, Moritz, Philipp, Levine, Sergey, Jordan,
Michael, and Abbeel, Pieter. High-Dimensional Contin-
uous Control Using Generalized Advantage Estimation.
arXiv, pp. 1–9, 2016.

Vinyals, Oriol, Blundell, Charles, Lillicrap, Timothy,
Kavukcuoglu, Koray, and Wierstra, Daan. Matching
Networks for One Shot Learning. arXiv, 2016.

Wang, Jx, Kurth-Nelson, Z, Tirumala, D, Soyer, H, Leibo,
Jz, Munos, R, Blundell, C, Kumaran, D, and Botvinick,
M. LEARNING TO REINFORCEMENT LEARN.

Wierstra, Daan and Alexander, F. Recurrent Policy Gradi-
ents. (May 2009).

Wierstra, Daan, Foerster, Alex, Peters, Jan, and Schmidthu-
ber, Juergen. Solving Deep Memory POMDPs with
Recurrent Policy Gradients. Icann2007, 1(1):697–706,
2007. ISSN 03029743.

Williams, Ronald J. Simple Statistical Gradient-Following
Algorithms for Connectionist Reinforcement Learning.
1992.

Williams, Ronald J and Peng, Jing. An Efficient Gradient-
Based Algorithm for On-Line Training of Recurrent Net-
work Trajectories. Appears in Neural Computation, (2):
490–501, 1990. ISSN 0899-7667.

Zhang, Marvin, Mccarthy, Zoe, Finn, Chelsea, Levine,
Sergey, Abbeel, Pieter, and Sep, L G. Learning
Deep Neural Network Policies with Continuous Mem-
ory States.

